PART I What is the material and what do I need to know in an emergency?

1. PRODUCT IDENTIFICATION

CHEMICAL NAME; CLASS: ARGON - Ar
LIQUEFIED ARGON - Ar, (Cryogenic)
Document Number: 001004

PRODUCT USE:
For general analytical/synthetic chemical uses.

SUPPLIER/MANUFACTURER'S NAME: AIRGAS INC.
ADDRESS: 259 N. Radnor-Chester Road
Suite 100
Radnor, PA 19087-5283

BUSINESS PHONE: 1-610-687-5253
EMERGENCY PHONE: 1-800-949-7937
International: 423-479-0293 (Call Collect)

DATE OF PREPARATION: May 12, 1996
REVISION DATE: January 2, 2002

2. COMPOSITION and INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>CHEMICAL NAME</th>
<th>CAS #</th>
<th>mole %</th>
<th>EXPOSURE LIMITS IN AIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argon</td>
<td>7440-37-1</td>
<td>>99%</td>
<td>ACGIH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TLV ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STEL ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PEL ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STEL ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IDLH ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OTHER</td>
</tr>
<tr>
<td>Maximum Impurities</td>
<td><1%</td>
<td></td>
<td>There are no specific exposure limits for Argon. Argon is a simple asphyxiant (SA). Oxygen levels should be maintained above 19.5%.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>None of the trace impurities in this mixture contribute significantly to the hazards associated with the product. All hazard information pertinent to this product has been provided in this Material Safety Data Sheet, per the requirements of the OSHA Hazard Communication Standard (29 CFR 1910.1200) and State equivalent standards.</td>
</tr>
</tbody>
</table>

NE = Not Established. C = Ceiling Limit. See Section 16 for Definitions of Terms Used.
NOTE: All WHMIS required information is included. It is located in appropriate sections based on the ANSI Z400.1-1993 format.
3. HAZARD IDENTIFICATION

EMERGENCY OVERVIEW: Argon is a colorless, odorless, non-flammable gas or a colorless, odorless, cryogenic liquid. The cryogenic liquid will rapidly boil to the gas at standard temperatures and pressures. The liquefied gas can cause frostbite to any contaminated tissue. The main health hazard associated with releases of this gas is asphyxiation, by displacement of oxygen.

ARGON GAS

HAZARDOUS MATERIAL INFORMATION SYSTEM

HEALTH (BLUE) 1

FLAMMABILITY (RED) 0

REACTIVITY (YELLOW) 0

PROTECTIVE EQUIPMENT B

EYES RESPIRATORY HANDS BODY

See Section 8 See Section 8

LIQUID ARGON

HAZARDOUS MATERIAL INFORMATION SYSTEM

HEALTH (BLUE) 3

FLAMMABILITY (RED) 0

REACTIVITY (YELLOW) 0

PROTECTIVE EQUIPMENT X

EYES RESPIRATORY HANDS BODY

See Section 8 See Section 8

See Section 16 for Definition of Ratings

SYMPTOMS OF OVEREXPOSURE BY ROUTE OF EXPOSURE: The most significant route of overexposure for this gas is by inhalation. The following paragraphs describe symptoms of exposure by route of exposure.

INHALATION: High concentrations of this gas can cause an oxygen-deficient environment. Individuals breathing such an atmosphere may experience symptoms which include headaches, ringing in ears, dizziness, drowsiness, unconsciousness, nausea, vomiting, and depression of all the senses. The skin of a victim may have a blue color. Under some circumstances, death may occur. The effects associated with various levels of oxygen are as follows:

CONCENTRATION SYMPTOMS OF EXPOSURE
12-16% Oxygen: Breathing and pulse rate increased, muscular coordination slightly disturbed.
10-14% Oxygen: Emotional upset, abnormal fatigue, disturbed respiration.
6-10% Oxygen: Nausea and vomiting, collapse or loss of consciousness.
Below 6%: Convulsive movements, possible respiratory collapse, and death.

OTHER POTENTIAL HEALTH EFFECTS: Contact with cryogenic liquid or rapidly expanding gases (which are released under high pressure) may cause frostbite. Symptoms of frostbite include change in skin color to white or grayish-yellow. The pain after contact with liquid can quickly subside.

HEALTH EFFECTS OR RISKS FROM EXPOSURE: An Explanation in Lay Terms. Overexposure to Argon may cause the following health effects:

ACUTE: The most significant hazard associated with this gas is inhalation of oxygen-deficient atmospheres. Symptoms of oxygen deficiency include respiratory difficulty, headache, dizziness, and nausea. At high concentrations, unconsciousness or death may occur. Contact with cryogenic liquid or rapidly expanding gases may cause frostbite.

CHRONIC: There are currently no known adverse health effects associated with chronic exposure to Argon.

TARGET ORGANS: Respiratory system.
PART II What should I do if a hazardous situation occurs?

4. FIRST-AID MEASURES

RESCUERS SHOULD NOT ATTEMPT TO RETRIEVE VICTIMS OF EXPOSURE TO ARGON WITHOUT ADEQUATE PERSONAL PROTECTIVE EQUIPMENT. At a minimum, Self-Contained Breathing Apparatus should be worn.

Remove victim(s) to fresh air as quickly as possible. In case of contact, immediately flush eyes with copious amounts of water for at least 15 minutes. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Only trained personnel should administer supplemental oxygen.

In case of frostbite, place the frostbitten part in warm water. DO NOT USE HOT WATER. If warm water is not available or is impractical to use, wrap the affected parts gently in blankets. Alternatively, if the fingers or hands are frostbitten, place the affected area in the armpit. Encourage victim to gently exercise the affected part while being warmed. Seek immediate medical attention.

Victim(s) must be taken for medical attention. Rescuers should be taken for medical attention, if necessary. Take copy of label and MSDS to physician or other health professional with victim(s).

5. FIRE-FIGHTING MEASURES

See Section 16 for Definition of Ratings

FLASH POINT: Not applicable.
AUTOIGNITION TEMPERATURE: Not applicable.
FLAMMABLE LIMITS (in air by volume, %):
Upper (UEL): Not applicable.
Lower (LEL): Not applicable.
FIRE EXTINGUISHING MATERIALS: Non-flammable, inert gas. Use extinguishing media appropriate for surrounding fire.

UNUSUAL FIRE AND EXPLOSION HAZARDS: Argon does not burn; however, containers, when involved in fire, may rupture or burst in the heat of the fire.

RESPONSE TO FIRE INVOLVING CRYOGEN: Cryogenic liquids can be particularly dangerous during fires because of their potential to rapidly freeze water. Careless use of water may cause heavy icing. Furthermore, relatively warm water greatly increases the evaporation rate of Argon. If large concentrations of Argon gas are present, the water vapor in the surrounding air will condense, creating a dense fog that makes it difficult to find fire exits or equipment. Liquid Argon, when exposed to the atmosphere, will produce a cloud of ice/fog in the air upon its release.

Explosion Sensitivity to Static Discharge: Not sensitive.

SPECIAL FIRE-FIGHTING PROCEDURES: Structural firefighters must wear Self-Contained Breathing Apparatus and full protective equipment. Move fire-exposed cylinders if it can be done without risk to firefighters. Otherwise, cool containers with hose stream and protect personnel. Withdraw immediately in case of rising sounds from venting safety device or any discoloration of tanks due to the fire.

6. ACCIDENTAL RELEASE MEASURES

SPILL AND LEAK RESPONSE: Uncontrolled releases should be responded to by trained personnel using pre-planned procedures. Proper protective equipment should be used. In case of a release, clear the affected area and protect people. Minimum Personal Protective Equipment should be Level B: protective clothing, gloves resistant to tears, and Self-Contained Breathing Apparatus.
6. ACCIDENTAL RELEASE MEASURES (Continued)

SPILL AND LEAK RESPONSE (continued): Allow the gas, which is heavier than air, to dissipate. Monitor the surrounding area for oxygen levels. The atmosphere must have at least 19.5 percent oxygen before personnel can be allowed in the area without Self-Contained Breathing Apparatus. Attempt to close the main source valve prior to entering the area. If this does not stop the release (or if it is not possible to reach the valve), allow the gas to release in-place or remove it to a safe area and allow the gas to be released there.

RESPONSE TO CRYOGENIC RELEASE: Clear the affected area and allow the liquid to evaporate and the gas to dissipate. After the gas is formed, follow the instructions provided in the previous paragraph. If the area must be entered by emergency personnel, SCBA, Kevlar gloves, and appropriate foot and leg protection must be worn.

PART III How can I prevent hazardous situations from occurring?

7. HANDLING and STORAGE

WORK PRACTICES AND HYGIENE PRACTICES: As with all chemicals, avoid getting Argon IN YOU. Do not eat or drink while handling chemicals. Be aware of any signs of dizziness or fatigue; exposures to fatal concentrations of Argon could occur without any significant warning symptoms.

STORAGE AND HANDLING PRACTICES: Cylinders should be stored in dry, well-ventilated areas away from sources of heat. Compressed gases can present significant safety hazards. Store containers away from heavily trafficked areas and emergency exits. Post “No Smoking or Open Flames” signs in storage or use areas.

SPECIAL PRECAUTIONS FOR HANDLING GAS CYLINDERS: Protect cylinders against physical damage. Store in cool, dry, well-ventilated fireproof area, away from flammable materials and corrosive atmospheres. Store away from heat and ignition sources and out of direct sunlight. Do not store near elevators, corridors, or loading docks. Do not allow area where cylinders are stored to exceed 52° C (125°F). Use only storage containers and equipment (pipes, valves, fittings to relieve pressure, etc.) designed for the storage of Liquid Argon. Do not store containers where they can come into contact with moisture. Cylinders should be stored upright and be firmly secured to prevent falling or being knocked over. Cylinders can be stored in the open, but in such cases, should be protected against extremes of weather and from the dampness of the ground to prevent rusting.

Keep Dewar flasks covered with loose-fitting cap. This prevents air or moisture from entering the container, yet allows pressure to escape. Use only the stopper or plug supplied with the container. Ensure that ice does not form in the neck of flasks. If the neck of Dewar flask is blocked by ice or “frozen” air, follow manufacturer’s instruction for removing it. Ice can also cause pressure release valves to fail. Never tamper with pressure relief devices in valves and cylinders. The following rules are applicable to situations in which cylinders are being used:

Before Use: Move cylinders with a suitable hand truck. Do not drag, slide, or roll cylinders. Do not drop cylinders or permit them to strike each other. Secure cylinders firmly. Leave the valve protection cap in place (where provided) until cylinder is ready for use.

During Use: Use designated CGA fittings and other support equipment. Do not use adapters. Do not heat cylinder by any means to increase the discharge rate of the product from the cylinder. Use check valve or trap in discharge line to prevent hazardous backflow into the cylinder. Do not use oils or grease on gas-handling fittings or equipment.

After Use: Close main cylinder valve. Replace valve protection cap (where provided). Mark empty cylinders “EMPTY”.

NOTE: Use only DOT or ASME code containers. Cylinders must not be recharged except by or with the consent of owner. For additional information refer to the Compressed Gas Association Pamphlet P-1, Safe Handling of Compressed Gases in Containers. For cryogenic liquids, refer to CGA P-12, Safe Handling of Cryogenic Liquids. Additionally, refer to CGA Bulletin SB-2 “Oxygen Deficient Atmospheres”.

PROTECTIVE PRACTICES DURING MAINTENANCE OF CONTAMINATED EQUIPMENT: Follow practices indicated in Section 6 (Accidental Release Measures). Make certain that application equipment is locked and tagged-out safely. Purge gas handling equipment with inert gas (e.g., Nitrogen) before attempting repairs.

8. EXPOSURE CONTROLS - PERSONAL PROTECTION

VENTILATION AND ENGINEERING CONTROLS: Use with adequate ventilation to maintain oxygen level above 19.5% in the work area. Local exhaust ventilation is preferred, because it prevents Argon dispersion into the work place by eliminating it at its source. If appropriate, install automatic monitoring equipment to detect the level of oxygen.
8. EXPOSURE CONTROLS - PERSONAL PROTECTION (Continued)

RESPIRATORY PROTECTION: Maintain oxygen level above 19.5% in the workplace. Use supplied air respiratory protection if oxygen level is below 19.5% or during emergency response to a release of Argon. If respiratory protection is required, follow the requirements of the Federal OSHA Respiratory Protection Standard (29 CFR 1910.134) or equivalent State standards.

EYE PROTECTION: Splash goggles, face shields, or safety glasses. Face shields must be worn when using cryogenic Argon.

HAND PROTECTION: Wear gloves resistant to tears when handling cylinders of Argon. Use low-temperature protective gloves when working with containers of Liquid Argon.

BODY PROTECTION: Use body protection appropriate for task. Transfer of large quantities under pressure may require protective equipment appropriate to protect employees from splashes of liquefied product, as well as to provide sufficient insulation from extreme cold.

9. PHYSICAL and CHEMICAL PROPERTIES

VAPOR DENSITY: 1.650 kg/m³ (0.103 lb/ft³) EVAPORATION RATE (nBuAc = 1): Not applicable.
SPECIFIC GRAVITY (air = 1): 1.380 FREEZING POINT: -189.2°C (-308.9°F)
SOLUBILITY IN WATER v/v @ 20 °C (68°F): 3.37% BOILING POINT (@ 1 atm.): -185.9°C (-302.6°F)
VAPOR PRESSURE: Not applicable. ODOR THRESHOLD: Not applicable.
COEFFICIENT WATER/OIL DISTRIBUTION: Log P = 0.94. pH: Not applicable.
SPECIFIC VOLUME (ft³/lb): 9.7 EXPANSION RATIO: 841 (cryogenic liquid)

APPEARANCE AND COLOR: Argon is a colorless, odorless gas or a colorless, odorless, cryogenic liquid.

HOW TO DETECT THIS SUBSTANCE (warning properties): There are no unusual warning properties associated with a release of Argon. In terms of leak detection, fittings and joints can be painted with a soap solution to detect leaks, which will be indicated by a bubble formation.

10. STABILITY and REACTIVITY

STABILITY: Normally stable, inert gas.
DECOMPOSITION PRODUCTS: None.
MATERIALS WITH WHICH SUBSTANCE IS INCOMPATIBLE: None. Argon is an inert gas.
HAZARDOUS POLYMERIZATION: Will not occur.
CONDITIONS TO AVOID: Avoid exposing cylinders to extremely high temperatures, which could cause the cylinders to rupture or burst.

PART IV Is there any other useful information about this material?

11. TOXICOLOGICAL INFORMATION

TOXICITY DATA: The following data are for Argon:
Standard animal toxicity values are not available. Male rats were exposed for 6 days to 20% oxygen and 80% Argon at 1 atmosphere ambient pressure. No significant changes in blood cell counts or bone marrow were observed. Other animal studies concern the deficiency of (hypoxia) or the narcotic effects of various pressures of Argon, the effects of increased Argon pressures on the central nervous system and decompression sickness.

Eyes: Argon gas injected into the anterior (front) chamber of the eyes of rabbits caused no injury and was reabsorbed at about the same rate as air.

SUSPECTED CANCER AGENT: Argon is not found on the following lists: FEDERAL OSHA Z LIST, NTP, CAL/OSHA, IARC, and therefore is neither considered to be nor suspected to be a cancer-causing agent by these agencies.

IRRITANCY OF PRODUCT: Argon is not an irritant. However, contact with rapidly expanding gases can cause frostbite and damage to exposed skin and eyes.

SENSITIZATION OF PRODUCT: Argon is not a sensitizer after prolonged or repeated exposures.
11. TOXICOLOGICAL INFORMATION (Continued)

REPRODUCTIVE TOXICITY INFORMATION: Listed below is information concerning the effects of Argon on the human reproductive system.

Mutagenicity: Argon is not expected to cause mutagenic effects in humans.
Embryotoxicity: Argon is not expected to cause embryotoxic effects in humans.
Teratogenicity: Argon is not expected to cause teratogenic effects in humans.
Reproductive Toxicity: Argon is not expected to cause adverse reproductive effects in humans.

A mutagen is a chemical which causes permanent changes to genetic material (DNA) such that the changes will propagate through generational lines. An embryotoxin is a chemical which causes damage to a developing embryo (i.e., within the first eight weeks of pregnancy in humans), but the damage does not propagate across generational lines. A teratogen is a chemical which causes damage to a developing fetus, but the damage does not propagate across generational lines. A reproductive toxin is any substance which interferes in any way with the reproductive process.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE: Pre-existing respiratory conditions may be aggravated by overexposure to Argon.

RECOMMENDATIONS TO PHYSICIANS: Treat symptoms and eliminate overexposure.

BIOLOGICAL EXPOSURE INDICES (BEIs): Currently, Biological Exposure Indices (BEIs) are not applicable for this compound.

12. ECOLOGICAL INFORMATION

ENVIRONMENTAL STABILITY: Argon occurs naturally in the atmosphere. The gas will be dissipated rapidly in well-ventilated areas.

EFFECT OF MATERIAL ON PLANTS or ANIMALS: Any adverse effect on animals would be related to oxygen-deficient environments. No adverse effect is anticipated to occur to plant life, except for frost produced in the presence of rapidly expanding gases.

EFFECT OF CHEMICAL ON AQUATIC LIFE: No evidence is currently available on Argon’s effects on aquatic life.

13. DISPOSAL CONSIDERATIONS

PREPARING WASTES FOR DISPOSAL: Product removed from the cylinder must be disposed of in accordance with appropriate Federal, State, and local regulations. Return cylinders with residual product to Airgas. Do not dispose of locally.

14. TRANSPORTATION INFORMATION

THIS MATERIAL IS HAZARDOUS AS DEFINED BY 49 CFR 172.101 BY THE U.S. DEPARTMENT OF TRANSPORTATION.

PROPER SHIPPING NAME: Argon Gas: Argon, compressed Argon Liquid: Argon, refrigerated liquid
HAZARD CLASS NUMBER and DESCRIPTION: 2.2 (Non-Flammable Gas) 2.2 (Non-Flammable Gas)
UN IDENTIFICATION NUMBER: UN 1006 UN 1951
PACKING GROUP: Not applicable. Not applicable.
DOT LABEL(S) REQUIRED: Non-Flammable Gas Non-Flammable Gas
NORTH AMERICAN EMERGENCY RESPONSE GUIDEBOOK NUMBER (2000): 121 (Gas); 120 (Liquid)
MARINE POLLUTANT: Argon is not classified by the DOT as a Marine Pollutant (as defined by 49 CFR 172.101, Appendix B).
TRANSPORT CANADA TRANSPORTATION OF DANGEROUS GOODS REGULATIONS: THIS MATERIAL IS CONSIDERED AS DANGEROUS GOODS. Use the above information for the preparation of Canadian Shipments.

15. REGULATORY INFORMATION

U.S. SARA REPORTING REQUIREMENTS: Argon is not subject to the reporting requirements of Sections 302, 304, and 313 of Title III of the Superfund Amendments and Reauthorization Act.
U.S. SARA THRESHOLD PLANNING QUANTITY: Not applicable.
15. REGULATORY INFORMATION (Continued)

U.S. CERCLA REPORTABLE QUANTITY (RQ): Not applicable.

CANADIAN DSL/NDSL INVENTORY STATUS: Argon is on the DSL Inventory.

U.S. TSCA INVENTORY STATUS: Argon is on the TSCA Inventory.

OTHER U.S. FEDERAL REGULATIONS: Not applicable.

U.S. STATE REGULATORY INFORMATION: Argon is covered under specific State regulations, as denoted below:

- Alaska - Designated Toxic and Hazardous Substances: Argon.
- California - Permissible Exposure Limits for Chemical Contaminants: Argon.
- Florida - Substance List: Argon.
- Kansas - Section 302/313 List: No.
- Massachusetts - Substance List: Argon.
- Missouri - Employer Information/Toxic Substance List: Argon.
- New Jersey - Right to Know Hazardous Substance List: Argon.
- North Dakota - List of Hazardous Chemicals, Reportable Quantities: No.
- Pennsylvania - Hazardous Substance List: Argon.
- Rhode Island - Hazardous Substance List: Argon.
- Texas - Hazardous Substance List: No.
- West Virginia - Hazardous Substance List: No.
- Wisconsin - Toxic and Hazardous Substances: No.

CALIFORNIA SAFE DRINKING WATER AND TOXIC ENFORCEMENT ACT (PROPOSITION 65): Argon is not on the California Proposition 65 lists.

LABELING:

COMPRESSED GAS:

CAUTION: HIGH PRESSURE GAS. CAN CAUSE RAPID SUFFOCATION. Store and use with adequate ventilation. Use equipment rated for cylinder pressure. Close valve after each use and when empty. Use in accordance with the Material Safety Data Sheet.

FIRST-AID: IF INHALED, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Call a physician. DO NOT REMOVE THIS PRODUCT LABEL.

CRYOGENIC LIQUID:

ALWAYS KEEP CONTAINER IN UPRIGHT POSITION.

WARNING: EXTREMELY COLD LIQUID AND GAS UNDER PRESSURE. CAN CAUSE RAPID SUFFOCATION. CAN CAUSE SEVERE FROSTBITE. Store and use with adequate ventilation. Do not get liquid in eyes, on skin or clothing. For liquid withdrawal, wear face shield and gloves. Do not drop. Use hand truck for container movement. Close valve after each use and when empty. Use in accordance with the Material Safety Data Sheet.

FIRST-AID: IF INHALED, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Call a physician. IN CASE OF FROSTBITE, obtain medical treatment immediately. DO NOT REMOVE THIS PRODUCT LABEL.

CANADIAN WHMIS SYMBOLS: Class A: Compressed Gases
DEFINITIONS OF TERMS

A large number of abbreviations and acronyms appear on a MSDS. Some of these which are commonly used include the following:

CAS #: This is the Chemical Abstract Service Number which uniquely identifies each constituent. It is used for computer-related searching.

ACGIH - American Conference of Governmental Industrial Hygienists, a professional association which establishes exposure limits. TLV - Threshold Limit Value - an airborne concentration of a substance which represents conditions under which it is generally believed that nearly all workers may be repeatedly exposed without adverse effect. The duration must be considered, including the 8-hour Time Weighted Average (TWA), the 15-minute Short Term Exposure Limit, and the instantaneous Ceiling Level (C). Skin absorption effects must also be considered.

OSHA - U.S. Occupational Safety and Health Administration. PEL - Permissible Exposure Limit - This exposure value means exactly the same as a TLV, except that it is enforceable by OSHA. The OSHA Permissible Exposure Limits are based in the 1989 PELs and the June, 1993 Air Contaminants Rule (Federal Register; 58: 35338-35351 and 58: 40191). Both the current PELs and the vacated PELs are indicated. The phrase, “Vacated 1989 PEL,” is placed next to the PEL which was vacated by Court Order.

IDLH - Immediately Dangerous to Life and Health - This level represents a concentration from which one can escape within 30 minutes without suffering escape-preventing or permanent injury. The DFG - MAK is the Republic of Germany’s Maximum Exposure Level, similar to the U.S. PEL. NIOSH is the National Institute of Occupational Safety and Health, which is the research arm of the U.S. Occupational Safety and Health Administration (OSHA). NIOSH issues exposure guidelines called Recommended Exposure Levels (RELs). When no exposure guidelines are established, an entry of NE is made for reference.

HAZARD RATINGS:

HAZARDOUS MATERIALS IDENTIFICATION SYSTEM: Health Hazard: 0 (minimal acute or chronic exposure hazard); 1 (slight acute or chronic exposure hazard); 2 (moderate acute or significant chronic exposure hazard); 3 (severe acute exposure hazard; onet ime overexposure can result in permanent injury and may be fatal); 4 (extreme acute exposure hazard; onetime overexposure can be fatal). Flammability Hazard: 0 (minimal hazard); 1 (materials that require substantial pre-heating before burning); 2 (combustible liquid or solids; liquids with a flash point of 38-93°C [100-200°F]); 3 (Class IB and IC flammable liquids with flash points below 38°C [100°F]); 4 (Class IA flammable liquids with flash points below 23°C [73°F] and boiling points below 38°C [100°F]). Reactivity Hazard: 0 (normally stable); 1 (material that can become unstable at elevated temperatures or which can react slightly with water); 2 (materials that are unstable but do not detonate or which can react violently with water); 3 (materials that can detonate when initiated or which can react explosively with water); 4 (materials that can detonate at normal temperatures or pressures).

NATIONAL FIRE PROTECTION ASSOCIATION: Health Hazard: 0 (material that on exposure under fire conditions would offer no hazard beyond that of ordinary combustible materials); 1 (materials that on exposure under fire conditions could cause irritation or minor residual injury); 2 (materials that on intense or continued exposure under fire conditions could cause temporary incapacitation or possible residual injury); 3 (materials that can on short exposure could cause serious temporary or residual injury); 4 (materials that under very short exposure could cause death or major residual injury).

NATIONAL FIRE PROTECTION ASSOCIATION (Continued); Flammability Hazard and Reactivity Hazard: Refer to definitions for “Hazardous Materials Identification System”.

FLAMMABILITY LIMITS IN AIR:

Much of the information related to fire and explosion is derived from the National Fire Protection Association (NFPA). Flash Point - Minimum temperature at which a liquid gives off sufficient vapors to form an ignitable mixture with air. Autoignition Temperature: The minimum temperature required to initiate combustion in air with no other source of ignition. LEL - the lowest percent of vapor in air, by volume, that will explode or ignite in the presence of an ignition source. UEL - the highest percent of vapor in air, by volume, that will explode or ignite in the presence of an ignition source.

TOXICOLOGICAL INFORMATION:

Possible health hazards as derived from human data, animal studies, or from the results of studies with similar compounds are presented. Definitions of some terms used in this section are: LD50 - Lethal Dose (solids & liquids) which kills 50% of the exposed animals; LC50 - Lethal Concentration (gases) which kills 50% of the exposed animals; ppm concentration expressed in parts of material per million parts of air or water; mg/m³ concentration expressed in weight of substance per volume of air; mg/kg quantity of material, by weight, administered to a test subject, based on their body weight in kg. Data from several sources are used to evaluate the cancer-causing potential of the material. The sources are: IARC - the International Agency for Research on Cancer; NTP - the National Toxicology Program, RTECS - the Registry of Toxic Effects of Chemical Substances, OSHA and CAL/OSHA. IARC and NTP rate chemicals on a scale of decreasing potential to cause human cancer with rankings from 1 to 4. Subrankings (2A, 2B, etc.) are also used. Other measures of toxicity include TDL0, the lowest dose to cause a symptom and TCL0 the lowest concentration to cause a symptom; TDo, LDL0, and LDo, or TC, TCo, TLC0, and LC0, the lowest dose (or concentration) to cause lethal or toxic effects. BEI - Biological Exposure Indices, represent the levels of determinants which are mostly likely to be observed in specimens collected from a healthy worker who has been exposed to chemicals to the same extent as a worker with inhalation exposure to the TLV. Ecological Information: EC is the effect concentration in water.

REGULATORY INFORMATION:

This section explains the impact of various laws and regulations on the material. EPA is the U.S. Environmental Protection Agency. WHMIS is the Canadian Workplace Hazardous Materials Information System. DOT and TC are the U.S. Department of Transportation and the Transport Canada, respectively. Superfund Amendments and Reauthorization Act (SARA); the Canadian Domestic/Non-Domestic Substances List (DSL/NDDSL); the U.S. Toxic Substance Control Act (TSCA); Marine Pollutant status, according to the DOT; the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund); and various state regulations.