1. PRODUCT IDENTIFICATION

CHEMICAL NAME; CLASS: OXYGEN O₂
OXYGEN O₂ REFRIGERATED LIQUID

PRODUCT USE:
For general analytical/synthetic chemical uses.

SUPPLIER/MANUFACTURER’S NAME: AIRGAS INC.

ADDRESS:
259 North Radnor-Chester Road
Suite 100
Radnor, PA 19087-5283

BUSINESS PHONE: 1-610-687-5253
EMERGENCY PHONE: 1-800-949-7937
International: 423-479-0293

DATE OF PREPARATION: May 20, 1996
DATE OF REVISION: January 15, 2003

2. COMPOSITION and INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>CHEMICAL NAME</th>
<th>CAS #</th>
<th>mole %</th>
<th>ACGIH-TLV</th>
<th>OSHA-PEL</th>
<th>NIOSH</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>7782-44-7</td>
<td>99.0%</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TWA</td>
<td>STEL</td>
<td>TWA</td>
<td>STEL</td>
</tr>
</tbody>
</table>
| Maximum Impurities | 1 | None of the trace impurities in this mixture contribute significant additional hazards at the concentrations present in this product. All pertinent hazard information has been provided in this document, per the requirements of the Federal Occupational Safety and Health Administration Standard (29 CFR 1910.1200), U.S. State equivalent Standards and Canadian Workplace Hazardous Materials Identification System Standards (CPR 4).

NE = Not Established.
See Section 16 for Definitions of Terms Used.

NOTE (1): ALL WHMIS required information is included in appropriate sections based on the ANSI Z400.1-1998 format. This gas has been classified in accordance with the hazard criteria of the CPR and the MSDS contains all the information required by the CPR.
3. HAZARD IDENTIFICATION

EMERGENCY OVERVIEW: Oxygen is a colorless, odorless, oxidizing gas, or a colorless, odorless, cryogenic liquid. The chief health hazard presented by this gas at atmospheric pressures is respiratory system irritation after overexposure to high oxygen concentrations. Contact with the cryogenic liquid can cause frostbite and burns to exposed tissue. The main physical hazard associated with releases of this gas is related to its oxidizing power. This gas is not flammable, but is an oxidizing gas which can accelerate the burning of common combustible materials. The cryogenic liquid will rapidly boil to the gas at standard temperatures and pressures. Emergency responders must practice extreme caution when approaching oxygen releases because of the extreme fire potential.

OXYGEN GAS

<table>
<thead>
<tr>
<th>HAZARDOUS MATERIAL IDENTIFICATION SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEALTH HAZARD (BLUE)</td>
</tr>
<tr>
<td>FLAMMABILITY HAZARD (RED)</td>
</tr>
<tr>
<td>PHYSICAL HAZARD (YELLOW)</td>
</tr>
</tbody>
</table>

PROTECTIVE EQUIPMENT: B

<table>
<thead>
<tr>
<th>EYES</th>
<th>RESPIRATORY</th>
<th>HANDS</th>
<th>BODY</th>
</tr>
</thead>
<tbody>
<tr>
<td>See</td>
<td>Section 8</td>
<td>See</td>
<td>Section 8</td>
</tr>
</tbody>
</table>

LIQUID OXYGEN

<table>
<thead>
<tr>
<th>HAZARDOUS MATERIAL IDENTIFICATION SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEALTH HAZARD (BLUE)</td>
</tr>
<tr>
<td>FLAMMABILITY HAZARD (RED)</td>
</tr>
<tr>
<td>PHYSICAL HAZARD (YELLOW)</td>
</tr>
</tbody>
</table>

PROTECTIVE EQUIPMENT: X

<table>
<thead>
<tr>
<th>EYES</th>
<th>RESPIRATORY</th>
<th>HANDS</th>
<th>BODY</th>
</tr>
</thead>
<tbody>
<tr>
<td>See</td>
<td>Section 8</td>
<td>See</td>
<td>Section 8</td>
</tr>
</tbody>
</table>

See Section 16 for Definition of Ratings

SYMPTOMS OF OVEREXPOSURE BY ROUTE OF EXPOSURE: The most significant route of overexposure for this gas or cryogenic liquid by inhalation. Skin and eye contact is also possible for the cryogenic liquid. The following paragraphs describe symptoms of exposure by route of exposure.

INHALATION: Normally, air contains 21% oxygen. No health effects have been observed in people exposed to 50% Oxygen at 1 atm. for 24 hours or longer. Exposure to this concentration at 3 atmospheres or more can cause adverse effects. High concentrations of this gas create an oxygen-rich environment. Individuals breathing such an atmosphere containing 51-100% Oxygen may experience nausea, dizziness, coughing, and bronchial irritation. Exposures to high Oxygen concentrations, especially at elevated pressures, can cause, hypothermia, increased depth of respiration, bradycardia, pulmonary discomfort, central nervous system effects (e.g., mood changes, dizziness), peripheral vasoconstriction, amblyopia (loss of vision), seizures, or death. Exposure levels to pure oxygen which have produced the adverse symptoms described above are summarized below.

<table>
<thead>
<tr>
<th>DURATION OF EXPOSURE</th>
<th>PRESSURE OF OXYGEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 hours</td>
<td>Sea level</td>
</tr>
<tr>
<td>3 hours</td>
<td>3 atmospheres</td>
</tr>
<tr>
<td>30 minutes</td>
<td>4 atmospheres</td>
</tr>
<tr>
<td>5 minutes</td>
<td>7 atmospheres</td>
</tr>
</tbody>
</table>

NOTE: Pure oxygen at 1/3 atmospheric pressure can be inhaled for weeks without symptoms. Inhalation of pure oxygen for up to 16 hours per day for many days and 65% oxygen in air for extended periods does not cause symptoms of oxygen toxicity.

OTHER POTENTIAL HEALTH EFFECTS: Contact of the skin or eyes with cryogenic liquid or rapidly expanding gases (which are released under high pressure) may cause frostbite. Symptoms of frostbite include change in skin color to white or grayish-yellow. The pain after contact with liquid can quickly subside. Ingestion and absorption through the skin are not considered significant routes of entry of oxygen into the body.
3. HAZARD IDENTIFICATION (Continued)

HEALTH EFFECTS OR RISKS FROM EXPOSURE: An Explanation in Lay Terms. Overexposure to Oxygen may cause the following health effects:

ACUTE: The most significant hazard associated with this gas is inhalation of oxygen-rich atmospheres. Symptoms of overexposure to Oxygen-rich atmospheres include nausea, dizziness, respiratory problems, lowering of body temperature, loss of vision, seizures, or death. Contact with cryogenic liquid or rapidly expanding gases (which are released under high pressure) may cause frostbite.

CHRONIC: Long-term exposure to high atmospheric concentrations of oxygen at normal pressure or elevated pressure may produce severe thickening and scarring of lung tissues. Blood hemoglobin concentration decreases (thus reducing oxygen-carrying capacity) with prolonged exposure to high concentrations. See Section 11 (Toxicological Information) for additional information.

PART II What should I do if a hazardous situation occurs?

4. FIRST-AID MEASURES

RESCUERS SHOULD NOT ATTEMPT TO RETRIEVE VICTIMS OF OVER-EXPOSURE WITHOUT ADEQUATE PERSONAL PROTECTIVE EQUIPMENT. At a minimum, Self-Contained Breathing Apparatus Personal Protective equipment (and fire retardant clothing, if appropriate) should be worn to protect against high oxygen content or super-heated gases in the event of fire. Victim(s) must be taken for medical attention. Rescuers should be taken for medical attention, if necessary. Take copy of label and MSDS to physician or other health professional with victim(s). Medical care providers should refer to Section 11 of this MSDS for additional information. Remove victim(s) to fresh air, as quickly as possible. Trained personnel should administer supplemental oxygen and/or cardio-pulmonary resuscitation, if necessary. Supplemental oxygen is not normally appropriate. Victims tend to recover rapidly, when removed from the hypoxic exposure. In case of frostbite, place the frostbitten part in warm water. DO NOT USE HOT WATER. If warm water is not available, or is impractical to use, wrap the affected parts gently in blankets. Alternatively, if the fingers or hands are frostbitten, place the affected area in the armpit. Encourage victim to gently exercise the affected part while being warmed. Seek immediate medical attention.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE: Pre-existing respiratory conditions may be aggravated by overexposure to Oxygen.

RECOMMENDATIONS TO PHYSICIANS: Treat symptoms and reduce overexposure. Symptoms of overexposure usually are relieved quickly. Immediate sedation and anticonvulsive therapy should be provided, as needed.

5. FIRE-FIGHTING MEASURES

OXYGEN GAS

<table>
<thead>
<tr>
<th>NFPA RATING</th>
<th>FLAMMABILITY</th>
<th>HEALTH</th>
<th>REACTIVITY</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

LIQUID OXYGEN

<table>
<thead>
<tr>
<th>NFPA RATING</th>
<th>FLAMMABILITY</th>
<th>HEALTH</th>
<th>REACTIVITY</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>OX</td>
</tr>
</tbody>
</table>

See Section 16 for Definition of Ratings

FLASH POINT: Not applicable.

AUTOIGNITION TEMPERATURE: Not applicable.

FLAMMABLE LIMITS (in air by volume, %):

- Lower (LEL): Not applicable.
- Upper (UEL): Not applicable.

FIRE EXTINGUISHING MATERIALS: Non-flammable gas. Use extinguishing media appropriate for surrounding fire.

UNUSUAL FIRE AND EXPLOSION HAZARDS: Oxygen does not burn; however, cylinders, when involved in fire, may rupture or burst in the heat of the fire. Oxygen will support and accelerate combustion. Common combustible materials will burn readily in elevated oxygen environments.

- Water Spray: YES
- Carbon Dioxide: YES
- Foam: YES
- Halon: YES
- Dry Chemical: YES
- Other: Any “ABC” Class.
5. FIRE-FIGHTING MEASURES (Continued)
RESPONSE TO FIRE INVOLVING CRYOGEN: Cryogenic oxygen may contribute to the ignition of any combustible material, including asphalt and wood. Extreme caution must be used when cryogenic oxygen storage vessels are involved in a fire. Cryogenic liquids can be particularly dangerous during fires because of their potential to rapidly freeze water. Careless use of water may cause heavy icing. Furthermore, relatively warm water greatly increases the evaporation rate of Oxygen. If large concentrations of Oxygen gas are present, the water vapor in the surrounding air will condense, creating a dense fog that may make it difficult to find fire exits or equipment. Liquid Oxygen, when exposed to the atmosphere, will produce a cloud of ice/fog in the air upon its release.

Explosion Sensitivity to Static Discharge: Not Sensitive.
SPECIAL FIRE-FIGHTING PROCEDURES: Structural fire-fighters must wear Self-Contained Breathing Apparatus and full protective equipment. Do not enter areas which have more than 23.5% oxygen in the atmosphere, since a serious fire and explosion hazard exists. Remove all flammable and combustible materials from vicinity of a release, if it can be done without risk to firefighters. Direct water onto vessels to keep the vessels cool. Shut-off the flow of oxygen or move vessels from fire area if it can be done safely. Withdraw from the area in case of rising sounds from venting safety devices or any discoloration of vessels due to fire.

6. ACCIDENTAL RELEASE MEASURES
SPILL AND LEAK RESPONSE: Uncontrolled releases should be responded to by trained personnel using pre-planned procedures. Proper protective equipment should be used. In case of a release, clear the affected area and protect people. Minimum Personal Protective Equipment should be Level B: fire protective clothing, mechanically-resistant, fire protective gloves and Self-Contained Breathing Apparatus. In general, DO NOT ENTER AN AREA IF THE OXYGEN CONTENT EXCEEDS 23.5%. USE VENTILATION TO REDUCE THE OXYGEN LEVELS. Locate and seal the source of the leaking gas. Protect personnel attempting the shut-off with water-spray. Allow the gas to dissipate. Monitor the surrounding area for oxygen levels. The atmosphere must have at least 19.5 percent and less than 23.5% oxygen before personnel can be allowed in the area without Self-Contained Breathing Apparatus. Attempt to close the main source valve prior to entering the area. If this does not stop the release (or if it is not possible to reach the valve), allow the gas to release in-place or remove it to a safe area and allow the gas to be released there.

RESPONSE TO CRYOGENIC RELEASE: Clear the affected area and allow the liquid to evaporate and the gas to dissipate. After the gas is formed, follow the instructions provided in the previous paragraph. If the area must be entered by emergency personnel, SCBA, Kevlar gloves, and appropriate foot and leg protection and fire protective clothing must be worn.

PART III How can I prevent hazardous situations from occurring?

7. HANDLING and STORAGE
WORK PRACTICES AND HYGIENE PRACTICES: Do not eat or drink while handling chemicals. Be aware of any signs of overexposure to this gas (see Section 3, Hazard Information).

STORAGE AND HANDLING PRACTICES: Cylinders should be stored in dry, well-ventilated areas away from sources of heat. Compressed gases can present significant safety hazards. Store containers away from heavily trafficked areas and emergency exits. Post “No Smoking or Open Flames” signs in storage or use areas.

SPECIAL PRECAUTIONS FOR HANDLING GAS CYLINDERS: Protect cylinders against physical damage. Store in cool, dry, well-ventilated, fireproof area, away from flammable materials and corrosive atmospheres. Store away from heat and ignition sources and out of direct sunlight. Do not store near elevators, corridors or loading docks. Do not allow area where cylinders are stored to exceed 52°C (125°F). Use only storage containers and equipment (pipes, valves, fittings to relieve pressure, etc.) designed for the storage of Oxygen. Do not store containers where they can come into contact with moisture.

Cylinders should be stored upright and be firmly secured to prevent falling or being knocked over. Cylinders can be stored in the open, but in such cases, should be protected against extremes of weather and from the dampness of the ground to prevent rusting. Keep Dewar flasks of liquid oxygen covered with loose fitting cap. This prevents air or moisture from entering the container, yet allows pressure to escape. Use only the stopper or plug supplied with the container. Ensure that ice does not form in the neck of flasks. If the neck of Dewar flask is blocked by ice or “frozen” air, follow owner’s instruction for removing it. A plugged Dewar or storage flask may develop sufficient pressure to cause catastrophic failure. Ice can also cause pressure release valves to fail. Never tamper with pressure relief devices in valves and cylinders. The temperature of Liquid Oxygen is sufficiently cold to condense and freeze most gases. Consequently, there is a danger of pipes or vents becoming plugged. Liquid Oxygen should therefore be stored and handled under positive pressure or in a closed system to prevent the infiltration and solidification of air or other gases.
7. HANDLING and STORAGE (Continued)

SPECIAL PRECAUTIONS FOR HANDLING GAS CYLINDERS (continued): The following rules are applicable to situations in which cylinders are being used:

Before Use: Move cylinders with a suitable hand-truck. Do not drag, slide or roll cylinders. Do not drop cylinders or permit them to strike each other. Secure cylinders firmly. Leave the valve protection cap, if provided, in-place until cylinder is ready for use.

During Use: Use designated CGA fittings and other support equipment. Do not use adapters. Do not heat cylinder by any means to increase the discharge rate of the product from the cylinder. Use check valve or trap in discharge line to prevent hazardous backflow into the cylinder. Do not use oils or grease on gas-handling fittings or equipment.

After Use: Close main cylinder valve. Replace valve protection cap, if provided. Mark empty cylinders “EMPTY”.

NOTE: Use only DOT or ASME code containers. Cylinders must not be recharged except by or with the consent of owner. For additional information refer to the Compressed Gas Association Pamphlet P-1, Safe Handling of Compressed Gases in Containers. For cryogenic liquids, refer to CGA P-12, Safe Handling of Cryogenic Liquids. Additionally, refer to CGA Bulletins G-4.3, “Commodity Specification for Oxygen”, and G-4.1 “Cleaning Equipment for Oxygen Service”.

PROTECTIVE PRACTICES DURING MAINTENANCE OF CONTAMINATED EQUIPMENT: Follow practices indicated in Section 6 (Accidental Release Measures). Make certain application equipment is locked and tagged-out safely. Purge gas handling equipment with inert gas (e.g., Nitrogen) before attempting repairs.

TANK CAR SHIPMENTS: Tank cars carrying Oxygen should be loaded and unloaded in strict accordance with tank-car owner's recommendations and all established on-site safety procedures. Appropriate personal protective equipment must be used during tank car operations (see Section 8). All loading and unloading equipment must be inspected, prior to each use. Loading and unloading operations must be attended, at all times. Tank cars must be level and wheels must be locked or blocked prior to loading or unloading. Tank car (for loading) or storage tank (for unloading) must be verified to be correct for receiving this product and be properly prepared, prior to starting the transfer operations. Hoses must be verified to be clean and free of incompatible chemicals, prior to connection to the tank car or vessel. Valves and hoses must be verified to be in the correct positions, before starting transfer operations. A sample (if required) must be taken and verified (if required) prior to starting transfer operations. All lines must be blown-down and purged before disconnecting them from the tank car or vessel. Refrigerated Liquid Oxygen is capable of causing the ignition of asphalt. Transfers should be performed on concrete surfaces.

8. EXPOSURE CONTROLS - PERSONAL PROTECTION

VENTILATION AND ENGINEERING CONTROLS: Use with adequate ventilation to maintain Oxygen levels between 19.5% and 23.5% in the work area. Local exhaust ventilation is preferred, because it prevents Oxygen dispersion into the workplace by eliminating it at its source. If appropriate, install automatic monitoring equipment to detect the level of Oxygen.

RESPIRATORY PROTECTION: Maintain oxygen levels above 19.5% and below 23.5% in the workplace. Use supplied air respiratory protection during emergency response to a release of Oxygen. If respiratory protection is needed, use only protection authorized in the U.S. Federal OSHA Standard (29 CFR 1910.134), applicable U.S. State regulations, or the Canadian CSA Standard Z94.4-93 and applicable standards of Canadian Provinces. Oxygen levels below 19.5% are considered IDLH by OSHA. In such atmospheres, use of a full-facepiece pressure/demand SCBA or a full facepiece, supplied air respirator with auxiliary self-contained air supply is required under OSHA’s Respiratory Protection Standard (1910.134-1998). **DO NOT ENTER AN AREA IF THE OXYGEN CONTENT EXCEEDS 23.5%**.

EYE PROTECTION: Safety glasses. Face-shields must be worn when using cryogenic Oxygen. If necessary, refer to U.S. OSHA 29 CFR 1910.133, or Canadian Standards.

HAND PROTECTION: Wear mechanically-resistant gloves when handling cylinders of Oxygen. Use low-temperature protective gloves (e.g., Kevlar) when working with containers of Liquid Oxygen. If necessary, refer to U.S. OSHA 29 CFR 1910.138 or appropriate Standards of Canada.

BODY PROTECTION: Use body protection appropriate for task. Transfer of large quantities under pressure may require protective equipment appropriate to protect employees from splashes of liquefied product, as well provide sufficient insulation from extreme cold. If a hazard of injury to the feet exists due to falling objects, rolling objects, where objects may pierce the soles of the feet or where employee’s feet may be exposed to electrical hazards, use foot protection, as described in U.S. OSHA 29 CFR.

9. PHYSICAL and CHEMICAL PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAPOR DENSITY (air = 1)</td>
<td>1.326 kg/m³ (0.083 lb/ft³)</td>
</tr>
<tr>
<td>SPECIFIC GRAVITY</td>
<td>1.105</td>
</tr>
<tr>
<td>SOLUBILITY IN WATER v/v @ 0°C (32°F)</td>
<td>4.9%</td>
</tr>
<tr>
<td>VAPOR PRESSURE (psia)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>EXPANSION RATIO</td>
<td>861 (cryogenic liquid)</td>
</tr>
<tr>
<td>COEFFICIENT WATER/OIL DISTRIBUTION</td>
<td>Log P -0.65</td>
</tr>
<tr>
<td>APPEARANCE AND COLOR</td>
<td>Oxygen is a colorless, odorless gas or a colorless and odorless, cryogenic liquid.</td>
</tr>
<tr>
<td>EVAPORATION RATE (nBuAc = 1):</td>
<td>Not applicable</td>
</tr>
<tr>
<td>FREEZING POINT</td>
<td>-218.8°C (-361.8°F)</td>
</tr>
<tr>
<td>BOILING POINT @ 1 atm.</td>
<td>-297.4°F (-183.0°C)</td>
</tr>
<tr>
<td>ODOR THRESHOLD</td>
<td>Not applicable. Odorless.</td>
</tr>
<tr>
<td>pH</td>
<td>Not applicable</td>
</tr>
<tr>
<td>SPECIFIC VOLUME (ft³/lb)</td>
<td>12.1</td>
</tr>
</tbody>
</table>
9. PHYSICAL and CHEMICAL PROPERTIES (Continued)

HOW TO DETECT THIS SUBSTANCE (warning properties): There are no unusual warning properties associated with a release of Oxygen. A release of the Refrigerated Liquid will be obvious as a result of the fog of atmospheric moisture which condenses in the vicinity of the release. An oxygen monitor can be used to detect oxygen levels.

10. STABILITY and REACTIVITY

STABILITY: Stable under conditions of normal temperature and pressure.
DECOMPOSITION PRODUCTS: None.
MATERIALS WITH WHICH SUBSTANCE IS INCOMPATIBLE: Oxygen is incompatible with combustible and flammable materials, chlorinated hydrocarbons, hydrazine, reduced boron compounds, ethers, phosphine, phosphorous tribromide, phosphorous trioxide, tetrafluorethylene, and compounds which readily form peroxides. The Refrigerated Liquid will cause asphalt to ignite.
HAZARDOUS POLYMERIZATION: Will not occur.
CONDITIONS TO AVOID: Avoid contact with incompatible materials. Cylinders exposed to high temperatures or direct flame can rupture or burst.

PART IV Is there any other useful information about this material?

11. TOXICOLOGICAL INFORMATION

TOXICITY DATA: Oxygen is the vital element in the atmosphere in which we live and breathe. The following toxicity data are for oxygen and are for exposure to high levels in a hyperbaric environment:
- Cytogenetic Analysis System (hamster lung) 80 pph
- TCLo (inhalation-woman) 12 pph for 10 minutes. Teratogenic effects.
- TCLo (inhalation-human) 100 pph for 14 hours. Pulmonary effects.

SUSPECTED CANCER AGENT: Oxygen is not found on the following lists: FEDERAL OSHA Z LIST, NTP, CAL/OSHA, IARC; therefore it is not considered to be, nor suspected to be a cancer-causing agent by these agencies.
IRRITANCY OF PRODUCT: Contact with rapidly expanding gases or the refrigerated liquid can cause frostbite and damage to exposed skin and eyes.
SENSITIZATION OF PRODUCT: Oxygen is not a human skin or respiratory sensitizer.
REPRODUCTIVE TOXICITY INFORMATION: Listed below is information concerning the effects of Oxygen on the human reproductive system.
- Mutagenicity: Oxygen is not expected to cause mutagenic effects in humans. High concentrations of Oxygen at atmospheric pressure caused chromosomal aberrations and mutations in specific test animal tissues.
- Embryotoxicity: Oxygen is not expected to cause embryotoxic effects in humans.
- Teratogenicity: Oxygen is not expected to cause teratogenic effects in humans. Exposure of pregnant hamsters to 3-4 atmospheres of 100% oxygen for periods of 2-3 hours on days 6, 7, and 8 of pregnancy produced teratogenic effects in small, but significant number of fetuses.
- Reproductive Toxicity: Oxygen is not expected to cause adverse reproductive effects in humans.

A mutagen is a chemical which causes permanent changes to genetic material (DNA) such that the changes will propagate through generation lines. An embryotoxin is a chemical which causes damage to a developing embryo (i.e. within the first eight weeks of pregnancy in humans), but the damage does not propagate across generational lines. A teratogen is a chemical which causes damage to a developing fetus, but the damage does not propagate across generational lines. A reproductive toxin is any substance which interferes in any way with the reproductive process.

BIOLOGICAL EXPOSURE INDICES (BEIs): Biological Exposure Indices (BEIs) are not applicable for this compound.

12. ECOLOGICAL INFORMATION

ENVIRONMENTAL STABILITY: Oxygen occurs naturally in the atmosphere. The gas will be dissipated rapidly in well-ventilated areas. The following environmental data are available for Oxygen.

OXYGEN: Log Kow = -0.65, oxygen does not bioconcentrate in aquatic organisms

EFFECT OF MATERIAL ON PLANTS or ANIMALS: No adverse effect is anticipated to occur to animal or plant-life, except for frost produced in the presence of rapidly expanding gases.

EFFECT OF CHEMICAL ON AQUATIC LIFE: No evidence is currently available on Oxygen’s effects on aquatic life.

13. DISPOSAL CONSIDERATIONS

PREPARING WASTES FOR DISPOSAL: Product removed from the cylinder must be disposed of in accordance with appropriate U.S. Federal, State, and local regulations or with regulations of Canada and its Provinces. Return cylinders with residual product to Airgas, Inc. Do not dispose of locally.
14. TRANSPORTATION INFORMATION

This compressed gas is hazardous as defined by 49 CFR 172.101 by the U.S. Department of Transportation.

For Oxygen, Gas:

PROPER SHIPPING NAME: Oxygen, compressed
HAZARD CLASS NUMBER and DESCRIPTION: 2.2 (Non-Flammable Gas)
UN IDENTIFICATION NUMBER: UN 1072
PACKING GROUP: Not Applicable
DOT LABEL(S) REQUIRED: Class 2.2 (Non-Flammable Gas)
Class 5.1 (Oxidizer)

NORTH AMERICAN EMERGENCY RESPONSE GUIDEBOOK NUMBER (2000): 122
MARINE POLLUTANT: Oxygen is not classified by the DOT as a Marine Pollutant (as defined by 49 CFR 172.101, Appendix B).

For Oxygen, Liquid:

PROPER SHIPPING NAME: Oxygen, refrigerated liquid
HAZARD CLASS NUMBER and DESCRIPTION: 2.2 (Non-Flammable Gas)
UN IDENTIFICATION NUMBER: UN 1073
PACKING GROUP: Not Applicable
DOT LABEL(S) REQUIRED: Class 2.2 (Non-Flammable Gas)
Class 5.1 (Oxidizer)

NORTH AMERICAN EMERGENCY RESPONSE GUIDEBOOK NUMBER (2000): 122
MARINE POLLUTANT: Oxygen is not classified by the DOT as a Marine Pollutant (as defined by 49 CFR 172.101, Appendix B).

TRANSPORT CANADA TRANSPORTATION OF DANGEROUS GOODS REGULATIONS: This gas is considered as Dangerous Goods, per regulations of Transport Canada. The use of the above U.S. DOT information from the U.S. 49 CFR regulations is allowed for shipments that originate in the U.S. For shipments via ground vehicle or rail that originate in Canada, the following information is applicable.

For Oxygen, Gas:

PROPER SHIPPING NAME: Oxygen, compressed
HAZARD CLASS NUMBER and DESCRIPTION: 2.2 (Non-Flammable Gas) [primary hazard]
5.1 (Oxidizing Gas) [secondary hazard]
UN IDENTIFICATION NUMBER: UN 1072
PACKING GROUP: Not Applicable
HAZARD LABEL(S) REQUIRED: Class 2.2 (Non-Flammable Gas)
Class 5.1 (Oxidizing Gas)
SPECIAL PROVISIONS: None
EXPLOSIVE LIMIT & LIMITED QUANTITY INDEX: 0.12
ERAP INDEX: 3000
PASSENGER CARRYING SHIP INDEX: 50
PASSENGER CARRYING ROAD OR RAIL VEHICLE INDEX: 75
MARINE POLLUTANT: Oxygen is not a Marine Pollutant

For Oxygen, Liquid:

PROPER SHIPPING NAME: Oxygen, refrigerated liquid
HAZARD CLASS NUMBER and DESCRIPTION: 2.2 (Non-Flammable Gas) [primary hazard]
5.1 (Oxidizing Gas) [secondary hazard]
UN IDENTIFICATION NUMBER: UN 1073
PACKING GROUP: Not Applicable
HAZARD LABEL(S) REQUIRED: Class 2.2 (Non-Flammable Gas)
Class 5.1 (Oxidizing Gas)
SPECIAL PROVISIONS: None
EXPLOSIVE LIMIT & LIMITED QUANTITY INDEX: 0.12
ERAP INDEX: 3000
PASSENGER CARRYING SHIP INDEX: 450
PASSENGER CARRYING ROAD OR RAIL VEHICLE INDEX: Forbidden

15. REGULATORY INFORMATION

ADDITIONAL U.S. REGULATIONS:

U.S. SARA REPORTING REQUIREMENTS: Oxygen is not subject to the reporting requirements of Sections 302, 304, and 313 of Title III of the Superfund Amendments and Reauthorization Act.
U.S. SARA THRESHOLD PLANNING QUANTITY: Not applicable.
U.S. CERCLA REPORTABLE QUANTITY (RQ): Not applicable.
U.S. TSCA INVENTORY STATUS: Oxygen is on the TSCA Inventory.

OTHER U.S. FEDERAL REGULATIONS: Not applicable.

U.S. STATE REGULATORY INFORMATION: Oxygen is covered under specific State regulations, as denoted below:

- Alaska - Designated Toxic and Hazardous Substances: No.
- California - Permissible Exposure Limits for Chemical Contaminants: No.
- Florida - Substance List: Oxygen.
- Illinois - Toxic Substance List: No.
- Kansas - Section 302/313 List: No.
- Massachusetts - Substance List: Oxygen.
- Missouri - Employer Information/Toxic Substance List: No.
- New Jersey - Right to Know Hazardous Substance List: Oxygen.
- North Dakota - List of Hazardous Chemicals, Reportable Quantities: No.
- Rhode Island - Hazardous Substance List: Oxygen.
- Texas - Hazardous Substance List: No.
- West Virginia - Hazardous Substance List: No.
- Wisconsin - Toxic and Hazardous Substances: No.

CALIFORNIA SAFE DRINKING WATER AND TOXIC ENFORCEMENT ACT (PROPOSITION 65): Oxygen is not on the California Proposition 65 lists.

CGA LABELING (for Cryogenic Liquid):

WARNING:

- ALWAYS KEEP CONTAINER IN UPRIGHT POSITION.
- EXTREMELY COLD, OXIDIZING LIQUID AND GAS UNDER PRESSURE.
- VIGOROUSLY ACCELERATES COMBUSTION.
- COMBUSTIBLES IN CONTACT WITH LIQUID OXYGEN MAY EXPLODE ON IGNITION OR CONTACT.
- CAN CAUSE SEVERE FROSTBITE.
- Keep oil, grease, and combustibles away.
- Use only with equipment cleaned for oxygen service.
- Do not get liquid in eyes, on skin, or clothing.
- For liquid withdrawal, wear face shield and gloves.
- Do not drop. Use hand truck for container movement.
- Avoid spills. Do not walk on or roll equipment over spills.
- Close valve after each use and when empty.
- Use in accordance with the Material Safety Data Sheet.

FIRST-AID:

- IN CASE OF FROSTBITE, obtain immediate medial attention.
- DO NOT REMOVE THIS PRODUCT LABEL.
15. REGULATORY INFORMATION (Continued)

ADDITIONAL U.S. REGULATIONS (continued):

CGA LABELING (For Compressed Gas):

WARNING: HIGH PRESSURE OXIDIZING GAS.
VIGOROUSLY ACCELERATES COMBUSTION.
Keep oil and grease away.
Open valve slowly.
Use only with equipment cleaned for oxygen service and rated for cylinder pressure.
Close valve after each use and when empty.
Use in accordance with the Material Safety Data Sheet.
DO NOT REMOVE THIS PRODUCT LABEL.

ADDITIONAL CANADIAN REGULATIONS:

CANADIAN DSL/NDSDL INVENTORY STATUS: Oxygen is on the DSL Inventory.
CANADIAN WHMIS SYMBOLS: Class A: Compressed Gases Class C: Oxidizer

16. OTHER INFORMATION

PREPARED BY: CHEMICAL SAFETY ASSOCIATES, Inc.
PO Box 3519, La Mesa, CA 91944-3519
619/670-0609

The information contained herein is based on data considered accurate. However, no warranty is expressed or implied regarding the accuracy of these data or the results to be obtained from the use thereof. AIRGAS, Inc. assumes no responsibility for injury to the vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, AIRGAS, Inc. assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in his use of the material.

DEFINITIONS OF TERMS

A large number of abbreviations and acronyms appear on a MSDS. Some of these which are commonly used include the following:

EXPOSURE LIMITS IN AIR (continued):

CAS #: This is the Chemical Abstract Service Number that uniquely identifies each constituent.

EXPOSURE LIMITS IN AIR:

CEILING LEVEL: The concentration that shall not be exceeded during any part of the working exposure.
LOQ: Limit of Quantitation.
MAK: Federal Republic of Germany Maximum Concentration Values in the workplace.
NE: Not Established. When no exposure guidelines are established, an entry of NE is made for reference.
NIC: Notice of Intended Change.
NIOSH CEILING: The exposure that shall not be exceeded during any part of the workday. If instantaneous monitoring is not feasible, the ceiling shall be assumed as a 15-minute TWA exposure (unless otherwise specified) that shall not be exceeded at any time during a workday.
NIOSH RELs: NIOSH's Recommended Exposure Limits.
PEL-Permissible Exposure Limit: OSHA’s Permissible Exposure Limits. This exposure value means exactly the same as a TLV, except that it is enforceable by OSHA. The OSHA Permissible Exposure Limits are based in the 1989 PELs and the June, 1993 Air Contaminants Rule (Federal Register: 58: 35338-35351 and 58: 40191). Both the current PELs and the vacated PELs are indicated. The phrase, “Vacated 1989 PEL,” is placed next to the PEL that was vacated by Court Order.
SKIN: Used when a there is a danger of cutaneous absorption.
STEL-Short Term Exposure Limit: Short Term Exposure Limit, usually a 15-minute time-weighted average (TWA) exposure that should not be exceeded at any time during a workday, even if the 8-hr TWA is within the TLV-TWA, PEL-TWA or REL-TWA.

HAZARD RATINGS:

This rating system was developed by the National Paint and Coating Association and has been adopted by industry to identify the degree of chemical hazards.

HAZARD RATINGS:

0 (Minimal Hazard): No significant health risk, irritation of skin or eyes not anticipated. Skin Irritation: Essentially non-irritating. PII or Draize = “0.” Eye Irritation: Essentially non-irritating, or minimal effects which clear in < 24 hours [e.g. mechanical irritation]. Draize = “0.” Oral Toxicity LD50 Rat: < 5000 mg/kg. Dermal Toxicity LD50 Rat or Rabbit: < 2000 mg/kg. Inhalation Toxicity 4-hrs LC50 Rat: < 20 mg/L). 1 (Slight Hazard: Minor reversible injury may occur; slightly or mildly irritating. Skin Irritation: Slightly or mildly irritating. Eye Irritation: Slightly or mildly irritating. Oral Toxicity LD50 Rat: > 500-5000 mg/kg. Dermal Toxicity LD50 Rat or Rabbit: > 1000-2000 mg/kg. Inhalation Toxicity LC50 4-hrs Rat: > 2-20 mg/L).

(continued on next page)
HAZARDOUS MATERIALS IDENTIFICATION SYSTEM
HAZARD RATINGS (continued):

HEALTH HAZARD (continued):

2 (Moderate Hazard: Temporary or transitory injury may occur. Skin
Irritation: Moderately irritating; primary irritant; sensitization. Pill or Draize
> 0, < 5. Eye Irritation: Moderately to severely irritating and/or corrosive; reversible corneal opacity; corneal involvement with destruction of tissue;
 clearing in 8-21 days. Draize > 0, < 25. Oral Toxicity LD50 Rat: > 50-
500 mg/kg. Dermal Toxicity LD50 Rat or Rabbit: > 200-1000 mg/kg.
Inhalation Toxicity LC50 4-hrs Rat: > 0.5-2 mg/L). 3 (Serious Hazard: Major injury likely unless prompt action is taken and medical treatment
is given; high level of toxicity; corrosive. Skin Irritation: Severely
irritating and/or corrosive; may destroy dermal tissue, cause skin
burns, dermal necrosis. Draize > 5-8 with destruction of tissue.
Eye Irritation: Corrosive, irreversible destruction of ocular tissue; corneal
involvement or irritation persisting for more than 21 days. Draize > 80
with effects irreversible in 21 days. Oral Toxicity LD50 Rat: > 1-50
mg/kg. Dermal Toxicity LD50 Rat or Rabbit: > 20-200 mg/kg. Inhalation
Toxicity LC50 4-hrs Rat: > 0.05-0.5 mg/L). 4 (Severe Hazard: Life-
threatening; major or permanent damage may result from single or
repeated exposure. Skin Irritation: Not appropriate. Do not rate as a
“4”, based on skin irritation alone. Eye Irritation: Not appropriate. Do
not rate as a “4”, based on eye irritation alone. Oral Toxicity LD50 Rat:
≤ 1 mg/kg. Dermal Toxicity LD50 Rat or Rabbit: ≤ 20 mg/kg. Inhalation
Toxicity LC50 4-hrs Rat: ≤ 0.05 mg/L).

FLAMMABILITY HAZARD:

0 (Minimal Hazard-Materials that will not burn in air when exposure to a
temperature of 815.5°C [1500°F] for a period of 5 minutes.); 1 (Slight
Hazard-Materials that must be pre-heated before ignition can occur. Material
is ignitable under all ambient temperatures.); 2 (Moderate Hazard-
Materials that must be pre-heated or exposed to relatively high ambient
temperatures before ignition can occur. Material is ignitable under all
ambient temperatures before ignition and combustion can occur, Including:
Materials that will burn in air when exposed to a temperature of
815.5°C [1500°F] for a period of 5 minutes or less; Liquids, solids
and semisolids having a flash point at or above 93.3°C [200°F] [e.g.
OSHA Class IIIIB, or; Most ordinary combustible materials [e.g. wood,
paper, etc.]; 2 (Moderate Hazard-Materials that must be moderately
heated or exposed to relatively high ambient temperatures before
ignition can occur. Material is ignitable under all ambient
temperatures; form hazardous atmospheres in air, but under high ambient
temperatures or moderate heating may release vapor in sufficient
quantities to produce hazardous atmospheres in air, Including:
Liquids having a flash point at or above 37.8°C [100°F]. Solid materials in
the form of coarse dusts that may burn rapidly but that generally do not
form explosive atmospheres; Solid materials in a fibrous or shredded
form that may burn readily and create flash fire hazards (e.g. cotton,
sisal, hemp; Solids and semisolids that readily give off flammable
vapors.); 3 (Serious Hazard- Liquids and solids that can be ignited
under almost all ambient temperature conditions. Materials in this
degree produce hazardous atmospheres with air under almost all
ambient temperatures, or, unaffected by ambient temperature, are
readily ignited under almost all conditions, including: Liquids having a
flash point below 22.8°C [73°F] and having a boiling point at or above
38°C [100°F] and below 73.9°C [100°F] [e.g. OSHA Class IB and IC];
Materials that on account of their physical form or environmental
conditions can form explosive mixtures with air and are readily
dispersed in air [e.g., dusts of combustible solids, mists or droplets of
flammable liquids]; Materials that burn extremely rapidly, usually by
reason of self-contained oxygen [e.g. dry nitrocellulose and many
organic peroxides]); 4 (Severe Hazard-Materials that will rapidly or
continuously react at atmospheric pressure and normal ambient
temperature or that are readily dispersed in air, and which will burn
readily, Including: Flammable gases; Flammable cryogenic materials;
Any liquid or gaseous material that is liquid while under pressure
and has a flash point below 22.8°C [73°F] and a boiling point below 37.8°C
[100°F] [e.g. OSHA Class IA; Material that ignite spontaneously when
exposed to air at a temperature of 54.4°C [130°F] or below [e.g.
pyrophoric]).

PHYSICAL HAZARD:

0 (Water Reactivity: Materials that do not react with water. Organic Peroxides:
Materials that are normally stable, even under fire conditions and will not react with water. Explosives: Substances that are Non-Explosive. Unstable Compressed Gases: No Rating. Pyrophorics: No Rating. Oxidizers: No “0” rating allowed. Unstable Reactives: Substances that will not polymerize, decompose, condense or self-react.;)

HAZARDOUS MATERIALS IDENTIFICATION SYSTEM
HAZARD RATINGS (continued):

PHYSICAL HAZARD (continued):

1 (Water Reactivity: Materials that change or decompose upon
exposure to moisture. Organic Peroxides: Materials that are normally
stable, but can become unstable at high temperatures and pressures.
These materials may react with water, but will not release energy.
Explosives: Division 1.5 & 1.6 substances that are very insensitive
explosives or that do not have a mass explosion hazard. Compressed Gases:
Pressure below OSHA definition. Pyrophorics: No Rating. Oxidizers:
Packaging Group III; Solids: any material that in either
concentration tested, exhibits a mean burning time less than or equal to
the mean burning time of a 3:7 potassium bromate/cellulose mixture
(PII or Draize > 5-8 with destruction of tissue). Liquids: any
material that exhibits a mean pressure rise time less than or equal to
the pressure rise time of a 1:1 nitric acid (65%)/cellulose mixture
and the criteria for Packing Group I and II are not met. Unstable Reactives:
Substances that may decompose, condense or self-react, but only
under conditions of high temperature and/or pressure and have little or
no potential to cause significant heat generation or explosive hazard.
Explosives: Div. 1.4 or 1.5). 2 (Water Reactivity: Materials that may
react violently with water. Organic Peroxides: Materials that, in themselves,
are normally unstable and will readily undergo violent chemical change,
but will not detonate. These materials may also react violently with water.
Explosives: Division 1.4 – Explosive substances where the
explosive effect are largely confined to the package and no projection
of fragments of appreciable size or range are expected. An external
explosion that does not cause virtual destruction of the
entire contents of the package. Compressed Gases: Pressurized and
meet OSHA definition but < 514.7 psi absolute at 21.1°C (70°F) [500
psig]. Pyrophorics: No Rating. Oxidizers: Packaging Group II; Solids:
any material that, either in concentration tested, exhibits a mean
burning time of less than or equal to the mean burning time of a 2.3
potassium bromate/cellulose mixture and the criteria for Packing Group
I and II are not met. Liquids: any material that exhibits a mean pressure
rise time less than or equal to the pressure rise of a 1:1 aqueous sodium
chlorate solution (40%)/cellulose mixture and the criteria for Packing
Group I are not met. Unstable Reactives: Substances that may
polymerize, decompose, condense, or self-react at ambient
temperature and/or pressure, but have a low potential for significant
heat generation or explosion. Substances that readily form peroxides
upon exposure to air or undergo hazardous polymerization in the
absence of inhibitors.); 3 (Water Reactivity: Materials that may
form explosive reactions with water. Organic Peroxides: Materials that are capable of detonation or
explosive reaction, but require a strong initiating source, or must be
heated under confinement before initiation; or materials that react
explosively with water. Explosives: Division 1.2 – Explosive
substances that have a fire hazard and either a minor blast hazard or a
projection hazard or both, but do not have a mass explosion hazard.
Compressed Gases: Pressure > 514.7 psi absolute at 21.1°C
(70°F) [500 psig]. Pyrophorics: No Rating. Oxidizers: Packaging Group I;
Solids: any material that, in either concentration tested, exhibits a mean
burning time less than the mean burning time of a 3.2 potassium
bromate/cellulose mixture. Liquids: Any material that spontaneously
ignites when mixed with cellulose in a 1:1 ratio, or which exhibits
a mean pressure rise time less than the pressure rise time of a 1:1
nitric acid (50%)/cellulose mixture. Unstable Reactives: Substances that may polymerize, decompose, condense or self-react at
ambient temperature and/or pressure and have a moderate potential
to cause significant heat generation or explosion.); 4 (Water Reactivity:
Materials that react explosively with water without requiring heat or
confinement. Organic Peroxides: Materials that are readily capable of
detonation or explosive decomposition at normal temperature
and pressures. Explosives: Division 1.1 & 1.2 explosive substances
that have a mass explosion hazard or have a projection hazard. A mass
explosion is one that affects almost the entire load instantaneously.
Compressed Gases: No Rating. Pyrophorics: Add to the definition of
Flammability “4”. Oxidizers: No “4” rating. Unstable Reactives:
Substances that may polymerize, decompose, condense or self-react
at ambient temperature and/or pressure and have a high potential
to cause significant heat generation or explosion, and eye protection is required for routine chemical use. PPE Rating C.
Hand, eye, and body protection may be required for routine chemical use.

OXYGEN - O{17} MSDS (Document # 001043) PAGE 10 OF 11
DEFINITIONS OF TERMS (Continued)

HMIS PERSONAL PROTECTION EQUIPMENT CODES:
A = Safety Glasses; B = Safety Glasses, Gloves; C = Safety Glasses, Gloves, Apron; D = ace Shield (w/ safety glasses), Gloves, Apron; E = Safety Glasses, Gloves, Dust Respirator; F = Safety Glasses, Gloves, Apron, Dust Respirator Safety Glasses, Gloves, Apron, Dust Respirator; G = Safety Glasses, Gloves, Chemical Vapor Respirator; H = Safety Glasses, Gloves, Apron, Chemical Vapor Respirator; I = Safety Glasses, Gloves, Combination Dust and Chemical Vapor Respirator; J = Safety Glasses, Gloves, Apron, Combination Dust and Chemical Vapor Respirator; K = Airline Hood or Mask, Gloves, Full Protective Suit, Boots; X = Situations Requiring Specialized Attention to PPE

NATIONAL FIRE PROTECTION ASSOCIATION HAZARD RATINGS:

HEALTH HAZARD: 0 (material that on exposure under fire conditions would offer no hazard beyond that of ordinary combustible materials); 1 (materials that on exposure under fire conditions could cause irritation or minor residual injury); 2 (materials that on intense or continued exposure under fire conditions could cause temporary incapacitation or possible residual injury); 3 (materials that can on short exposure could cause serious temporary or residual injury); 4 (materials that under very short exposure could cause death or major residual injury).

FLAMMABILITY HAZARD AND REACTIVITY HAZARD: Refer to definitions for “Hazardous Materials Identification System”.

FLAMMABILITY LIMITS IN AIR: Much of the information related to fire and explosion is derived from the National Fire Protection Association (NFPA). Flash Point - Minimum temperature at which a liquid gives off sufficient vapors to form an ignitable mixture with air. Autoignition Temperature: The minimum temperature required to initiate combustion in air with no other source of ignition. LEL - the lowest percent of vapor in air, by volume, that will explode or ignite in the presence of an ignition source.UEL - the highest percent of vapor in air, by volume, that will explode or ignite in the presence of an ignition source.

TOXICOLOGICAL INFORMATION:

Human and Animal Toxicology: Possible health hazards as derived from human data, animal studies, or from the results of studies with similar compounds are presented. Definitions of some terms used in this section are: LD₅₀ - Lethal Dose (solids & liquids) which kills 50% of the exposed animals; LC₅₀ - Lethal Concentration (gases) which kills 50% of the exposed animals; ppm concentration expressed in parts of material per million parts of air or water; mg/m³ concentration expressed in weight of substance per volume of air, mg/kg quantity of material, by weight, administered to a test subject, based on their body weight in kg. Other measures of toxicity include TDLo, the lowest dose to cause a symptom and TCLo the lowest concentration to cause a symptom; TDo, LDLo, and LDo, or TC, TCo, LClO, and LCo, the lowest dose (or concentration) to cause lethal or toxic effects. Cancer Information: The sources are: IARC - the International Agency for Research on Cancer; NTP - the National Toxicology Program. RTECS - the Registry of Toxic Effects of Chemical Substances, OSHA and CAL/OSHA. IARC and NTP rate chemicals on a scale of decreasing potential to cause human cancer with rankings from 1 to 4. Subrankings (2A, 2B, etc.) are also used. Other Information: BEI - ACGIH Biological Exposure Indices, represent the levels of determinants which are most likely to be observed in specimens collected from a healthy worker who has been exposed to chemicals to the same extent as a worker with inhalation exposure to the TLV.

ECOLOGICAL INFORMATION:

EC is the effect concentration in water. BCF = Bioconcentration Factor, which is used to determine if a substance will concentrate in lifeforms which consume contaminated plant or animal matter. Tₐₐₗ = median threshold limit; Coefficient of Oil/Water Distribution is represented by log Kₒₒ and is used to assess a substance’s behavior in the environment.

REGULATORY INFORMATION:

U.S. and CANADA:

This section explains the impact of various laws and regulations on the material. ACGIH: American Conference of Governmental Industrial Hygienists, a professional association which establishes exposure limits. EPA is the U.S. Environmental Protection Agency. NIOSH is the National Institute of Occupational Safety and Health, which is the research arm of the U.S. Occupational Safety and Health Administration (OSHA). WHMIS is the Canadian Workplace Hazardous Materials Information System. DOT and TC are the U.S. Department of Transportation and the Transport Canada, respectively. Superfund Amendments and Reauthorization Act (SARA); the Canadian Domestic/Non-Domestic Substances List (DSL/NDSL); the U.S. Toxic Substance Control Act (TSCA); Marine Pollutant status according to the DOT; the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund); and various state regulations. This section also includes information on the precautionary warnings which appear on the material’s package label. OSHA - U.S. Occupational Safety and Health Administration.